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Dilute resonating gases and the third virial coefficient
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We study dilute gases with short-range interactions and large two-body scattering lengths. At temperatures
between the condensation temperature and the scale set by the range of the potential there is a high degree of
universality. The first two terms in the expansion of thermodynamic functions in powers of the fugacity
which measures the diluteness of the system, are determined by the scattering length only. The term propor-
tional toz® depends only on one new parameter describing the three-body physics. We compute the third term
of the expansion and show that, for many values of this new parameter taen may be the dominant one.
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. INTRODUCTION triplet state to—18.8 fm for neutron-neutron in the spin-
singlet statg
Only on special circumstances the thermodynamic func- The typical momentum of the particles in a gas is set by
tions of a system can be evaluated starting from the microthe larger of the inverse interparticle distanc¥® and the
scopic interactions. However, in many situations only a fewinverse thermal wavelength= (M T/27) ~*? (from now on,
characteristics of the microscopic interactions are relevantve will use=1). In the natural cas&~R, the universal
All systems sharing these same microscopic characteristigggime occurs for N,nB3<1/a~1/R. This regime is essen-
have then the same macroscopic behavior, that is, there istally perturbative in the sense that, at any given order of the
certain degree of universality. An example of such a systenexpansion in powers of B/ a properly set up diagrammatic
is a gas of particles with short-range interactions. As long agxpansion involves only a finite number of diagrafh©n

the density and temperature are such that the typical wavehe other hand, when X/ n**~ 1/R the details of the par-
length\ of the particles is much larger than the rarig@f ticle interactions are important and each system should be
the forces, the details of the interaction potential is largelystudied in a case by case basis. The presence of large scat-
irrelevant and the thermodynamics is determined by the twotering lengths opens up an intermediate regime, where the
body scattering length, up to corrections of ordex/R. This  typical wavelength\ of the particles is comparable & but
observation has been used both for fermionic and bosonigtill larger thanR. The problem is no longer perturbative, as
gases since the 19508 in the computation of dilute gas evidenced by the fact that bound states of siza are ex-
properties in an expansion in powersnﬂ:s’ wheren is the pected, but some degree of universality should still hold.
density of particles. This regime can be at_tgined at very low temperatures and
Typically, the size of the two-body scattering length is Moderately high densitiesa®~1=nR® or at moderately
comparable to the range of the foreexR. However, there high temperaturea/\ ~1=R/\ and very low densities. It is
are important situations where the interactions are fine tune@n outstanding problem to understand the first of these re-
in such a way as to maka>R, even though other low- gimes, since, most likely, many-bpdy_ correlations are not
energy parameters such as the effective rangeetc., stil ~ SuPPressed, and a number of publications have appeared re-
have the size expected on dimensional groungsR. We  cently on the subject:"*®In this paper, we will consider the
have in mind two of these situations. The first one, a gas opécond case, namely, a dilutea’=1), moderately hot
neutral atoms, has received enormous experimental and theM T/2m)““a~1] gas of resonating=R particles.
oretical attention recently. The range of the interactions be- Since we are considering low densities, it is convenient to
tween the atoms is set by the length sdale(MCgq/%2)14  phrase our discussion in terms of the virial expansion, where
of the van der Wals force-C¢/r8. In some atomic species the different thermodynamic functions are expressed as
such asB’Rb and*He the fine tuning needed for large values POWer series on the fugacity=e”, where T=1/g is the
of ais provided by the Nature. In the case 4fie atoms for ~ t€mperature angk the chemical potential. The particle den-
instancea= 104 A, a value much larger tha~5 A or the  Sity n and the pressure are given by
effective range ;=7 A. More importantly, an external mag- 1
netic field can be applied in order to artificially modify the n= = (byz+2b,z2+3by 2%+ - - -),
scattering length, making it aunable parameter(Feshbach A3
resonance. The second example of unnaturally large scat-
tering lengths is a gas of neutrotend protons, if the Cou-
lomb force can be disregardedrhe range of the nuclear
forces is of the order of the Compton wavelength of the pion
(R~#A/m,~1.5 fm), but the scattering lengths are signifi- The usefulness of the virkil expansion resides on the fact
cantly larger(5.42 fm for the proton-neutron in the spin- that, for small densitiesy=<\ "3, zis also smallz<1. The

T
P:ﬁ(blz‘kbzzz"’bgzg‘i""). (1)

0163-1829/2003/61.7)/1745137)/$20.00 67 174513-1 ©2003 The American Physical Society



PAULO F. BEDAQUE AND GAUTAM RUPAK PHYSICAL REVIEW B67, 174513(2003

coefficientsh, contains contributions coming from-particle
correlations for allm=I, so its computation involves the
solution of thel-body problem. The calculations bf andb,
are rather easy and can be done analytically in the system

considered here. The computationtnf is a little more in-

volved: it includes some numerical integrations, and it is

related to the quite unusual properties of the three resonating

particle system.

There is a general formula relating; to Smatrix
elements.” However, the matrix elements relevant here are
the ones describing a variety of processes such as three-to-
three-particle scattering, dimer breakup in a collision to a
particle, etc. It seems to us that the equivalent method fol-
lowed below implicitly includes all these processes in a FIG. 1. Graph determining the density at leading ordez. ifihe
simple way. Also, since it is an straightforward application of cross represents an insertion of the particle number operator.
standard effective-field theory and many-body physics meth-
ods, it may have some methodological interest.

We will use the language of effective-field theory, which
is natural when exploring universal, low energy, large-
distance properties that are independent of the short-distan
details. We will work at the leading order in the small mo-
mentum expansion, where the Lagrangian of the system is

In selecting the diagrams contributing to given ordeein
one should notice that diagrams with a closed particle line
vanish in the vacuumz=0). Consequently, at low densities
tffeir contribution is suppressed by one powerzdbr each
closed particle loop. With that observation in mind, we see
that the only diagram contributing to the particle density at
leading order irz is the loop diagram shown in Fig. 1:

V2 C D
=M iont — = 2cutn2= =2cut)3+. ..
(2 (27,.)3 —iko+ €
wherey (1) is the field that annihilate&reatey a particle, z 72 z
C, and D, are constants that will be determined later, and “‘ﬁJr_ng +3§f3 +0(2). (4)

the dots stand for terms with either more derivativesjor
fields, whose contributions are suppressed at the order we are
considering here. We will discuss the bosonic case first and
comment on the few, but important, differences present infThe sum over the frequenciks is over all integer multiples
the fermionic case later. It is convenient to introduce aof 27T and e,=k?/2M — u. Equation (4) determinesb,
dummy fieldd with the quantum numbers of two particles =1, which is the free gas result. It also gives some contri-
dimen and use the equivalent Lagrangian butions tob, andbs.

The O(z?) contributions can be divided into the one-body
contr|but|onn(1) coming from the second term in E@) and

=2
L=yt i(90+v_ g+ AdTd— i(d*wer H.c) the two1 body contrlbutlons(z) From Egs.(4) and (%) we
2 find b{Y=2"52 The diagrams contributing tm{? are
dtdu’ 3 shown in Fig. 2. The need for the resummation in the full-
—gsdidygt (3) dimer propagator indicated at the bottom of Fig. 2 is more

where %/A=C, and 3@);0%/A%?=D,. The equivalence
between the two Lagrangian can be seen by performing the
Gaussian integration over the auxiliary fielédnd recovering

Eqg. (2), see Ref. 18. The value of the constants arbitrary ktp
and affects only the normalization of the dimer field. Physi-
cal quantities depend on it only through the combinatiGgs
andD,,.
We now compute the particle densityin a expansion in i

powers ofz and, by comparing with Eq.1), determine the

coefficientsb, . The computation of the two first virial coef-

ficients is rather trivial, and there are fairly explicit general == = — + =O= +

formulas for them. We will quickly discuss them here in

order to explain the method used in selecting which diagrams FIG. 2. Diagram determining the density at leading ordez?n
contribute at each order. (top) and the dressing of the dimer propagator.
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easily explained after computing it. The dimer propagator is 4 1

given by a geometrical sum DO(p)= ,

o 4x 2 p?
—————A+\/——2Mu—iMpy

1 1 1 1 2 4

=— 4+ = e — Mg 7
+ +
Dp)=-3x*tx>P} s O @

whereA is the cutoff scale for the momentum integral. This
where cutoff A dependence is absorbed in the renormalization
group flow of the renormalized two-body couplings. The
particle-particle scattering amplitude in the vacuum is given
by g?D. Thus, by setting 4A/Mg?+2A/7=1/a, we ob-
) tain the leading order scattering amplitude in the effective
zMg range expansiofafter analytically continuing the amplitude
to real values of the energy by setting—ky—2M u

2(p)=29(p)+3W(p)+0(z)

\/52
— ——2Mu—iM —
2 M Po

2
2mp +i€). Notice the fine tuning between the linearly divergent
. b k term 2A/w (kinetic energy and the interaction term
xf dkze*BkZ’ZMarctg 47wA/Mg(A)? (potential energyneeded to produce a small
0 2 . value of 1A. We can understand now the reason for the
k2+3 —2Mu—iMpg resummation of the graphs at the bottom of Fig. 2. For dilute
systems with typical momenta of ordpr-MT~1/a, the
+0O(2%). (6)  square root in the denominator of E@), generated by the
loops in the dimer propagator, isot negligible compared
to 1/a.
In particular, the leading order dimer propagator is the Plugging the expression in E¢7) in the diagram in Fig.
same as in the vacuum 2, we have
|
3
ol MTE d°k 1 1
(2m® 1 K2 k2
_£+ ——2Mu—iMkg ——2Mu—iMkq
dzy d*k 1 1 1
= MTJ —f . (8)
277i (2m)% ef1—1 1 K2 K2
——+ ——2Mu—Mny ——2Mu—Mpy

a

It is easier to consider the dimer contribution to the thermo- ) d6( k) )
dynamic potentia) and then computa’?= — aQ/au. The b )_21/2( efP2+ f dk— —e /M), (10
integration oversy, on a contour encircling the imaginary
axis, can be deformed into an integral over the discontinuityn the case, where the phase shifts are given by the leading
on the branch cutwhich describes the dimer break)uplus  order effective range expansidcotsk)=—1/a. A few
the contribution of the dimer pole. The final result is points are worth mentioning here. Firt, is a continuous
function ofa at 1/4=0. The change in the potential needed
1 to take a from a large and positive value to a large and
9 negative value is small, and that change has only a small
ayMT effect in the thermodynamics, even though there is a quali-
tative difference in the spectruiiirom a bound state to a
whereB,=1/(Ma?) is the location of the pole in the dimer virtual bound state Secondb., is positive and, foB,>T, it
propagator. This pole corresponds to a bound diiita is  is exponentially large. In the case>0, this is easily under-
positive) or a “virtual” bound state, that is, a pole in the stood as a consequence of the existence of a bound state:
unphysical shedfif a is negativg. Equation(9) is a particu- when T<B,, most particles form tight two-body bound
lar case of the classic formula relatirtgf) to the two-  states thereby increasing the density for a fixed temperature
particle scattering phase shift and chemical potential. In fact, if the terms dominate, the

2 2
z¢ z
= 2b2ﬁ :ﬁeﬁszzyz

1+ efrf]
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ratio of the two equations in E@l) give the equation of state
of a free gas with densitg/2.

The third virial coefficientb; includes three pieces. The
first,b§", is determined by the® piece in Eq(4) and equals
b{"=3752 The second oné$?, comes from a subleading
piece of the diagram of Fig. 2 and is given by

23
n?=3b—
A

3

=27, [[D“’)(k)]Zz“’(k) 3 O)(k)
ko

(2m)3

d
DO(K)——S Dk
+D( )idkoz ( )}

PHYSICAL REVIEW B67, 174513(2003

FIG. 3. Graph determining the density at leading order®iand
the integral equation for the three-body amplitude.

d’%k d -
—ZTE 3—[D(°)(k) M(k)] where in the second lin@=(—i»,p) and 7(—p,p+k;
(2m)* dko —p,p+Kk) is the forward particle-dimer scattering amplitude
3 determined by the diagrams at the bottom of Fig. 3. The
_ pz J’wdkzjwdpj’ d e proem integral over z is dominated by the particle pole aj
4 Jo 0 = —¢€p, With the contribution coming from the dimer pole
and cut suppressed by two powerszoiVe then have
p k
X arct
J p? _ 272 ¢ d%k d°P
k?+ ——2Mu—iMp, n{=— f —e B
2 (2m)® (2m)3) 2mi
1 k 2k k 2k
X : (1D XT| —P+—=,P+—;—P+—,P+—
1 k 3 3 3 3 o
-+ ——M? ko=i3u—i¢
a 4
1 1
where the integral ovef runs on a vertical line just to the X — — ,
left of the pole at—B,. The integral in Eq(11) is computed 1 3P? K? 3P?2  Kk?
numerically. The third piec&yl?, comes from actual three- 2Nt MEN re M{
body correlations in the system, and brings in new physics
besides that contained in two-body scattering. The diagrams (13

contributing to it are shown in Fig. 3. Just as the two-body

scattering amplitude cannot be computed in perturbatloNVhere we use the center-of-mass variatffe=(iep, p
theory, the three-body amplitude that enters in Fig. 3 also- k/3). The integration over the new variabje=3u+ 7 is
involves a resummation of an infinite number of diagrams.on a vertical line just to the left of the left-most singularity

This is because each additional loop involves a factqraf

wherep is the typical momentum flowing through the loop.

In the case considered he@y~ 1/\ ~1/a and the “suppres-
sion” factor is of order 1. The diagrams in Fig. 3 gives

dk  d® 1 \2
nP=12> P [ )D(O)(p+k)
Koo 4 (2m)% (2m)2\1Pot €
XT(—p,ptk,—p,pt+k)
d’k d%p dy 1

1 )2
77+Ep

12

:TZ% f

XDO(p+K)T(—p,p+k;—p,p+k),

(2m)% (2m)% 27 B7—1

that can be a trimer pole &*/6M — B3 or a dimer pole at
k?/6M + 3P2/4M — B,. The cuts in the three-body amplitude
describing dimer-particle scattering, dimer breakup, etc., are
on the real axis, to the right of two- and three-patrticle poles.

Unlike the dimer propagator, the diagrams adding up to
the three-body amplitude(—p,p+k;—p,p+k) do not
form a simple geometrical series and cannot be summed up
analytically. However, their sum is determined by the inte-
gral equation depicted at the bottom of Fig. 3. This integral
equation(Faddeev equatignis particularly simple for the
separable potential used hef@ome simplifications in the
computation ofb; in the case of separable potentials were
noted in Ref. 2D and was derived earlier with a variety of
technique€=2% It is more easily written in terms of the
swave amplitudeZy(¢,P,P’) defined by
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k 2k k 2k
o o T\ =PH+ - P+ — =P+, P+ — || Sizu-i¢
To(L,P,P") dP dP’ 3 3 3 3/
Mg? =| —- . (14
- 4M 47 A7 1 3p72 k2
P—?(é”rBz) Sy e I V)
a 4 6
|
Higher partial waves, describing more peripheral particle- 23
dimer collisions, give suppressed contributiofig.{,P,P’) n®=3pP —
satisfies N
To(£,P.P")=K(L,P.P") 03 2% (- T5(¢,P,P)
=i—M:f dPsz dzefs > >
2 (A 75(¢,P,) , 47%  \3Jo 3P
mJ0 2 4M 4
q°— T@‘" B>)
1 1
(19 X[ 1+ ——— . (18

a 2
with the kernel » /3P —M¢
4
41 3P? ¥
at Nz M

K(ZPP)=5

The amplitudeZy(¢,P,P) and the quadratures in E@L8)
have to be performed numericafty.

2 ’ 12
o Loy PHPPIAPTEME ga(A) The coefficientb;=b{"+b{?+b$? is a function of the
PP \P?2—PP'+P'2—M{ Mg? | temperature and of the parameters describing the micro-
(16) scopic dynamicgthe scattering length and the three-body

parameterA*). In Fig. 4, we show the value df; as a
Equation (15) has a number of surprising propert’és?®  function of 14 for a few values of these parameters. As an
This properties are more naturally described in terms otxample, we pickM =May, T=10 "eV~1.16 mK, and
renormalization theory. It was shown in Refs. 29, and 30 that- A2g,(A)/(2Mg?)=H(A)=—3.235 (the bottom solid
To(¢,P,P") is kept cutoff independent for small values of curve, —0.22 (the middle solid curve and 0.05(the top
P,P’<A if, and only if, the three-body force varies with the solid curve. In all of them, we use\ =200 eV, but, as men-
cutoff A as tioned above, the results are cutoff independent up to small
corrections of order 1/a). The first of these values was
chosen following Ref. 32 and it gives rise to a trimer with the
' binding energy of the shallowefHe trimer (as predicted
(17)  through potential model calculatiorid **whena s set tothe
_ value inferred from the dimer measurement 109 A 3¢
where A* is a new parameter that cannot be measuregyy the value of the\ used the deeper trimer state is absent.
through two-particle experiments asg~1.006 is the solu- Whena andA* are such that there is a three-body bound

tion of a certain trigonometric equation. The failure to in- stateB;=B,, we find empirically thabs scales roughly as
clude the three-body force term leads to a strong cutoff de;

. N B3 see Fig. 4. This is not surprising and is a direct analog
pendence on the results and thus, to the impossibility ogf the physics described by E€) in the case of the coeffi-

arriving at model independent results. The three-body SCalsient b,: when BB;>1 most particles form three-body

tering amplitude depends, even at the leading order in thg, g states, which increases the density for a given tem-
expansion in powers of/R, on the value of the three-body perature and chemical potential as compared to the free gas.
force, here parameterized By*. The parameteA™ encodes  This doesnot mean, however, that the integral in E48) is

all short distance physics, besides the valua, afecessary to  dominated by the trimer pole: the contribution from the two-
describe three-body systems. Liligit varies from one sys-  and three-particle cuts is never negligible. For values/of

tem to another and only the measurement of some three-bodyr which B, approaches, the dimer-particle cross-section
observable allows us to fix it. The appearance of an extrgjiverges. Still, the three-particle correlations describethpy
parameter not determined by two-body scattering precludegre smooth at those points. For systems with a trimer deeper
the possibility of predictions in the three-body sector basedhan the dimerbs can be much larger that bothy andb,,

g3(A)A?  sisgin(A/A*)—arctars,] ‘o
2Mg?  sinsgin(A/A*)+arctars,]

1

aA

only on the value of. _ o and dominate the virial expansion. This is not a rare situa-
Using Eqs.(13) and(14) and performing a trivial integral - tjon, due to a well known but strange feature of the three-
overk and the angular part d?, we arrive at resonating particle system: as the potential is changed to
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make the dimeshallower the trimer becomedeeper’® This bs
is what happens in thel =0.05 case shown in the top solid
curve in Fig. 4.

In atomic traps close to a Feshbach resonanceait ikat 1000
is, a tunable parameter. The influence of the magnetic field
on the value of the three-body force parametéris small, 100
since that describes short-distance physics of an energy scale
much higher than the magnetic field, and can be disregarded
in a first approximation. Thus, we can regard the horizontal 10
axis in Fig. 4 as denoting the magnetic field using the Fesh- 1
bach resonance formula 1—20 _— =10 0 10 20 a
FIG. 4. b; as a function of the inverse scattering length, 1ih
a(B)=a(B=0)| 1+ B—Bo)' (19 units of eV, for three values oH(A =200 eV) (solid lines, H

=—3.23,-0.22, 0.05, from bottom to tgpThe dashed line is the

) o estimatee”®s,
Let us summarize the approximation performed here that al-

lowed such a simple evaluation of such a complex three-
body dynamics. First, we approximate the two-body poten- ) _ ) _ _ )
tial by a short rangeg-function-like interaction. Corrections States suggesting that there is a time window in which our

to this approximation are proportional to the effective rangeresults apply. In th@<0 case, there is no two-body bound
ro/N, wherer,~R is the effective range, much smaller than state and it is not known how the rates for the formation of

a by assumption. Effective range corrections can be easiljle€P and shallow three-body bound states compare.
included, even to very high orders, without spoiling the sim- Finally, let us consider the changes introduced in case of

plicity of the method, as it has been done in few-nucleorf€rmionic particles. In the nondegenerate case considered

physics2®3" The second approximation was the noninclusionnere. the effect of the quantum statistics in the thermodynam-
of higher partial waves. In the two-body sectoraves and

ics is minor, and amounts to a change in sign in some of the
.. (1’3’ . ) ..

higher are suppressed by at lest two powerRA¥, and are coefficientsbi s . The elementary collisions, however,

small. In the three-body sector the suppression of th

ay differ a great deal due to the exclusion principle. If we
particle-dimer |-wave interactions are not suppressed by

ave only one fermionic species in the systesmanjave scat-
— tering is impossible and all virial coefficients,bs,- - - are
powers ofR/A, but by 1/(+1). All the higher partial waves suppgressedr.) In the case of two fermionic s?e(a’fssa dilute
correspond to a repulsive kernel in EG5), which do not e \tron gas two-body collisions are possible and the stan-
support bound states and cannot produce an enhancement f4 result in Eq(9) is valid. The physics of the three-body
the forme”®. In practice, the phase shifts are rather smallo,relations is, however, very different. No three-body force
but, if needed, they can also be easily included by solving thesym, without derivatives exist, and the three-body force con-
analog of Eq(15) corresponding to the higher partial wave yip tion is suppresseff. In this channel the three-body re-

and adding it to Eq(13). _ .. combination from atom-dimer scattering was also calculated
Our results are valid only in true thermal equilibrium, ;, ref. 43.b, can be computed in terms af alone, but

after two- and three-particle bound states had the time @ nnot ever be large and dominate the expansion, as the ker-

form, and assuming that they stay in the systemio not o 5nnearing in Eq(15) would be repulsive and would not

escape from the trap, if that is the cageor systems like the g 5501t 5 hound state. The case with three or more fermionic
alkali atoms studied in magnetic/optical traps, that have deeppecies with all the scattering lengths large but not necessar-

bound states with typical interparticle distance of orde€R jy aqual, which includes the dilute nuclear matter cqwe-
that lie outside the validity range of our effective theory, this;j< and neutrons with spin either up or dowis very simi-

means that our results are relevant only for the metastablg; 1 the bosonic case. Three particles can occupy the same
state before the collapse of the system, but after the two- anghyint in space without violating the exclusion principle and,
three-body bound states form. The formation of-kody 55 5 consequence, the two coupled equations that substitute

bound state requires the approach &f1 particlles in order Eq. (15 have very similar properties to the bosonic
to conserve energy and momentum, and their rates are COBguation

sequently suppressed Iy *. These rates are not known at

finite temperature but have been studied at zero temperature This work was supported by the Director, Office of En-
in Refs. 38—4Qrecombination into shallow statesnd (re-  ergy Research, Office of High Energy and Nuclear Physics,
combination into deep stafedn cases, whera>0 the re- and by the Office of Basic Energy Sciences, Division of
combination rate into deefiwo-body bound states is esti- Nuclear Sciences, of the U.S. Department of Energy under
mated to be much smaller than the rate into shallow boun&ontract No. DE-AC03-76SF00098.
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